Log of Current Activities and Applications

The main purpose of this listing is to make available information about work-inprogress prior to its publication. While the Center maintains a cumulative list of work undertaken since 1980, we offer information here only on newly undertaken, recently modified, or previously unreported work. Many projects listed in previous Center directories are still operating. Persons desiring further information about specific projects should contact the individual(s) involved. Those seeking a more complete view of current and recent work in the field should consult the directories published in 1985, 1986, and 1987.

The listing of applications that follows is divided into four sections. The first two sections contain projects which emphasize the gathering and processing of factual information. The first section (I), concerning bibliographies and databases of text, is arranged under several headings--composers, repertories, libretti, contextual indices (in which relations to external information are being explored), instruments, discographies, and iconography. Bibliographies and indices of musical material constitute the second section (II),

Analytical projects are subdivided into two categories--those exploring a particular methodology (section III) and those tailored to a specific repertory (section IV). In the latter instance, studies of historical repertories, of non-traditional and non-Western repertories, of text underlay, and of databases designed for analytical use are treated separately. An illustration is provided for listings with an asterisk.

A brief listing of sites at which multiple-purpose systems and programs of study are under development concludes this portion of the Directory.

I. Bibliographies and Databases of Text

A. Composers

Beethoven/Meredith

Title: Beethoven Bibliography Project
Scope: a comprehensive bibliography of
published and unpublished Beethoven
materials, to be made available through

RLIN

Investigator: William Meredith Associate: Patricia Elliott

Place: Ira F. Brilliant Center for Beethoven Studies, San Jose State University Duration of project: 1987-1991

Online access: RLIN

Janaček/Mraček

Title: Leos Janaček: A Guide to Research Scope: preparation of an extensive bibliography pertaining to the music and

writings of Janaček

Investigator: Jaroslav Mraček Place: San Diego State University Computer: Apple Macintosh Other devices: Apple LaserWriter Software: Apple Hypercard

Scribe/Schweitzer

Title: The Comédies-vaudevilles of

Eugène Scribe

Aim: investigation of the comedies, especially of the airs and their "timbres"; development of methods for historical research based on semantic data modelling and relational databases

Investigator: Rainer Schweitzer

Place: Musikwissenschaftliches Seminar,

University of Heidelberg Duration of project: 1988-90 Computer: IBM-PC compatible

Telemann/Stewart

Title: Telemann Works Database (TWD)
Scope: an on-line catalogue of the works of
G.P. Telemann (1681-1767), intended as
a continuously updatable supplement to
the TWV/TVWV of Martin Ruhnke

and Werner Menke

Investigator: Brian D. Stewart
Place: Pennsylvania State University

Computer: NEC APC IV Software: dBase III+

B. Repertories

Early Keyboard Sources/Silbiger

Scope: development of a database for early keyboard sources, in connection with a proposed archive for such sources to be established at Duke University

Investigator: Alexander Silbiger

Italian Cantatas/Whenham

Title: A Catalogue of the Sources of Italian Baroque Chamber Cantatas, 1600-1725 Scope: comprehensive catalogue listing concordances among music manuscripts and printed sources of music and poetry

Investigator: John Whenham Associate: Colin Timms

Place: Barber Institute of Fine Arts,

Birmingham University
Duration of project: 1983-90
Computer: mainframe
Other devices: pen plotter

Software: custom

Orchestral Repertory/OLIS

Title: Orchestra Library Information Ser-

vice (OLIS)

Purpose: to provide a thoroughly researched database of orchestral repertory, currently consisting of more than 4000 titles by more than 500 composers

Investigator: Heather Dinwiddie Associate: Robyn Guilliams

Place: American Symphony Orchestra

League

Computer: IBM PS/2

Software: OLIS (based on Revelation)

Portuguese Music/Castelo-Branco

Title: Cross-cultural Processes in Music: The Role of Portuguese Music in the World from the Fifteenth Century Investigator: Salwa El-Shawan Castelo-

Branco

Associates: Maria de São José Feraaz de Olveira, João Filipe S. Soeiro de

Carvalho

Place: New University of Lisbon Duration of project: 1987--Computer: Amstrad PC 1512

Other devices: Amstrad DMP 3000 Printer

Software: dBase III+

Renaissance Liturgy/Crawford

Title: Renaissance Liturgical Imprints: A Census

Scope: creation of a database for books printed between 1450 and 1600 [2700 records to date; 10,000 records

anticipated]

Investigator: David Crawford Associate: James Borders Place: University of Michigan Duration of project: c.1983--

Computer: IBM 3090

Software: SPIRES, Professional Composer

and Performer

C. Libretti

Ospedali Libretti/Berdes

Title: Index of Libretti for Sacred Vocal Works performed in the Venetian

Ospedali

Investigator: Jane L. Berdes Place: Bethesda, MD, and Three

Lakes, WI

Duration of project: 1983-90

Computer: Epson PC

Software: Personal Composer

Associated Literature: "Musical Life at the Ospedali grandi of Venice,

1525-1855," thesis, Oxford University

RISM Libretti/Walker

Title: U.S.-RISM Libretto Project

Purpose: to catalogue the 19th-c. Italian libretti in the Albert Schatz Collection at the Library of Congress, as the initial stage in a many-year, multi-institutional plan to catalogue all historical libretti in the U.S. (RISM related project)

Principal Investigator: Marita P.

McClymonds

Director: Diane Parr Walker Associates: Scott L. Balthazar Place: University of Virginia

Online access: RLIN

D. Contextual Indices

Arias/Mamy

Title: Searchable Index of Venetian Opera

Arias

Scope: the repertoire of the Teatro S. Gio. Grisostomo of Venice (17th/18th

centuries)

Investigator: Sylvie Mamy Associate: Michel Monfils

Place: Paris: Laboratoire Informatique des Sciences Humaines, Centre National de

la Recherche Scientifique Duration of project: 1980--

Computer: IBM (SAS.MVS, MS/DOS)

Software: dBase III, SAS

Associated Literature: "La diaspora dei cantanti veneziani nella prima metà del Settecento," Proceedings of the International Vivaldi Conference. Venice.

1987 [in press]

Motet Text Incipits/Fromson

Title: Database of Motet Text Incipits,

1560-1605

Scope: database holds names of composers who set each text, date of and number of voices in their setting, feast to which it was assigned, and references to source and chant-settings of the text; primary emphasis on printed motets, Italian

composers

Investigator: Michele Fromson

Place: UC Davis Computer: IBM Software: PC-File III

E. Instruments

Early Pianos/Clinkscale

Title: Early Pianos, 1720-1860

Scope: comprehensive database with fields for maker, place, date, owners, physical characteristics, bibliographical references

Investigator: Martha Novak Clinkscale

Place: UC Riverside

Duration of project: 1987-1990

Computer: Compaq Software: R:Base

Fiske Museum/Rogers

Title: Catalogue of Musical Instruments in

the Fiske Museum

Scope: machine-readable inventory of the

museum's collection of musical

instruments

Director: Patrick J. Rogers

Place: Fiske Museum of Musical Instruments, Claremont University Center,

Claremont, CA Computer: IBM PC Software: R:Base 5000 North American Indian Instruments/ Haefer

Title: North American Indian Music Instruments belonging to the Smithsonian

Institution

Scope: complete descriptive database (including measurements) of North American Indian music/sound instruments housed in the Museum of Natural History (Dept. of Anthropology), Smithsonian Institution

Investigator: J. Richard Haefer **Associates**: Jo Van Volkenberg,

Tracy Walsh

Place: School of Music, Arizona State Univ.

Duration of project: 1987-88

Computer: Macintosh Plus, Everex EMAC20D (will be placed on Mac II

LAN for class use)
Software: Double Helix II

Pagemaker

Associated Literature: catalogue in

preparation

F. Discographies

American Music/KWilliams

Title: Computer Index of American Music
Purpose: to develop an index of sound
recordings and printed materials on
American music in the holdings of the
libraries of the Univ. of North Carolina
at Greensboro

Investigators: J. Kent Williams, Eleanor McCrickard, Frank McCarty,

Ron Crutcher

Place: UNC Greensboro Duration of project: 1988-9

Computer: IBM-PC/AT compatible

Software: dBase III or IV

CBMR Database/Floyd

Title: CBMR Database: A Union Catalog of Black Music Holdings in Chicago-Area Libraries and a Reference System

Purpose: to provide reference lists of black music books, recordings, printed music, manuscripts, photographs, and verticalfile materials

Head of project: Samuel A. Floyd, Jr. Associates: Marsha J. Reisser,

Marion Gushee, Virginia McLaurin,

Dian Raptosh

Place: Center for Black Music Research,

Columbia College, Chicago

Time: 1985--

Computer (OS): PC with AM-170 co-processor board (AMOS)

Software: STAR database and information

retrieval system

ETNO/Schaffrath

Title: ETNO: Database to Retrieve and Catalogue Ethnomusicological Soundmaterial

Scope: information from covers, booklets, etc. of published records, tapes, videos, etc. (unit is the single musical piece)

Investigator: Helmut Schaffrath Associate: Barbara Jesser Place: University of Essen

Duration of project: 1984-permanent **Computer**: IBM 3207 (CMS mainframe)

Software: STAIRS/CMS; ESAC

Edelberg/Handel Discography

Title: Comprehensive Index of Handel

Recordings

Purpose: to create a complete listing of all recorded performances of music by Handel (on cylinders, 33-, 45- and 78-rpm disks, tapes and CD's)

Investigator: David Edelberg

Place: Montréal Computer: IBM-PC

Jazzbank/Robinson

Title: Jazzbank

Purpose: to design a central database for storage/retrieval of comprehensive jazz discographical information, accessible

via dial-up from a PC Investigator: Dave Robinson

Place: Fairfax, VA Computer: mainframe Software: Oracle RDBMS

G. Iconography

Iconography/Haefer

Title: SLIDECAT/MUSICONCAT

Scope: catalogue/database of ca. 15,000+ slides of music iconography/ethnology; contains descriptive and bibliographic information and digitized visual image for music iconography subjects, music instruments representations, and ethnographic object/ceremonies/etc.

Investigator: J. Richard Haefer Associate: Kathleen Thompson Place: Arizona State University Duration of project: 1986--

Computer: Macintosh Plus/Jasmine DD80

RCMI/Brook

Title: Music Iconography Database

Purpose: to make accessible by means of a standardized vocabulary about 20,000 artworks with complete documentation and descriptions of their musical elements; encompasses all artworks (including non-Western ones) up to c. 1900

Investigator: Barry S. Brook Associate: Terence Ford

Place: Research Center for Music Iconography, CUNY Graduate Center

Time: 1987-90

Computer: IBM 3081KX, IBM 3071

Software: SPIRES

II. Bibliographies and Indices of Musical Material

Auber/Schneider

Title: Catalogue of the Works by Daniel-

François-Esprit Auber

Scope: thematic catalogue including all translations, arrangements, publishers,

lithographers, etc.

Investigator: Herbert Schneider

Associate: Th. Betewiese

Place: Musikwissenschaftliches Seminar,

University of Heidelberg Duration of project: 1984-88 Computer: Compaq Portable III

Software: dBase

Chant Examples/Chartier

Title: "Exempla Theorica"

Scope: an index of chants quoted by music theorists from ca. 850 to 1600; compilation and statistics derived from them as to genres, modes, frequencies, geo-

graphical diffusion, etc. Investigator: Yves Chartier Place: University of Ottawa Duration of project: 1988-90

Computer: IBM PC AT and compatibles Other devices: Dot-matrix and laser

printers

Software: XyWrite III+; ZyIndex; Professional Composer; dBase III+

Associated Literature: unpublished

preliminary report

English sacred anonymi/Morehen

Title: 16th- and 17th-century Anonymous

English Sacred Music

Scope: English manuscript sources of litur-

gical music, 1549-1644 Investigator: John Morehen Place: University of Nottingham Duration of project: 1980-Computer: ICL 2988

Other devices: Benson plotter Software: FORTRAN77 Encoding: DARMS

Associated Literature: "Thematic Cataloguing by Computer," Fontes Artes

Musicae 31 (1984), 32-8

Historical Editions/GHill

Title: A Guide to Music in Collected Editions, Historical Sets, and Monuments

Aim: to provide an index to the contents and a complete bibliography of the editions previously covered in Heyer's book; musical incipits are encoded if

titles are ambiguous

Head of project: George R. Hill
Associate director: Barbara Renton
Place: City University of New York

Time: 1986-8

Musical encoding: custom (Garrett Bowles)

Italian Sonata/Mangsen

Title: Instrumental Duos and Trios Printed

in Italy, 1600-1675

Scope: thematic catalogue of instrumental duos and trios in prints from 1600 to 1675 (to be extended to 1700 and to manuscript sources at a later date)

Investigator: Sandra Mangsen

Place: Cornell University; Montréal, Quebec

Duration of project: 1986-89 Computer: Macintosh 512E Software: Helix, Data Desk Encoding: MUSSCRIPT

Lute Tablature/Hultberg

Aims: to implement the tablature-tostandard-notation transcription processes for Spanish, Italian, English, French, and German styles of tablature, as well as tablature-to-tablature conversion; thematic indices of Spanish sources are in preparation

Head of project: Warren Hultberg Associate: Mary Lou Hultberg

Place: SUNY Potsdam

Computer: Macintosh 512, SE Other devices: DX7II FD Synthesizer Software: BASIC, PASCAL; PFS--File and

Report; Professional Composer/Performe Encoding: modified DARMS; direct input

from synthesizer or computer

Music printing: Professional Composer,

Imagewriter

Madrigal/Lincoln

Title: The Italian Madrigal and Related Repertories: Indexes to Printed Collections, 1500-1600 [Yale University Press, 1988]

Scope: incipits of all voices of 9500 pieces (total 38,000 incipits) printed in music staff notation; index to first lines; thematic locator index; index to RISM numbers for printed sources

Head of project: Harry B. Lincoln

Place: SUNY Binghamton

Hardware: IBM 3090 (data); Nicolet Zeta

plotter (music printing) **Encoding: DARMS**

Software: custom, in PL/1 and PASCAL Associated Literature: "A Description of the Database in Italian Secular Polyphony held at SUNY Binghamton, N.Y.," Fontes Artis Musicae XXXI/3 (1984); sample of music printing in 1986

Marcello/Selfridge-Field

Title: The Music of the Marcellos-Benedetto and Alessandro: A Catalogue of Works [Oxford University Press, 1989]

Scope: listing of textual and musical incipits of 800 works, based on a survey of 3000 sources, with multiple indices and source filiation

Investigator: Eleanor Selfridge-Field Place: CCARH, Menlo Park, CA

Time: 1984-88

Hardware: HP-1000 (IBYCUS);

HP LaserJet II

Software: custom designed by Walter B.

Hewlett

Medieval Rhymed Office/Hughes

Title: Late Medieval Rhymed Offices Scope: manuscript sources/inventories; complete textual and chant concordances; general information, catalogues, and inventories Investigator: Andrew Hughes Place: University of Toronto

Computer: various, mostly IBM and clones

Software: custom designed encoding system; FYI; Brigham Young

Concordance Program

Associated literature: Dictionary of the Middle Ages: "Rhymed Office"; "Research Report," in Journal of the Plainsong and Medieval Music Society 8 (1985)

NTI: Wind Band Music/Camus

Title: National Tune Index: Early American Wind and Ceremonial Music, 1636-1836 Scope: a listing and concordance of eighteenth-century wind music in American, British, French, Hessian, and

other sources

Head of project: Raoul Camus

Place: CUNY--Queensborough (supported

by NEH) Time: 1987-90

Publication: microfiche binder with printed contents guide (University

Music 1987)

Swedish Hymn Tunes/Görannson

Title: Index of Swedish Hymn Tunes Scope: 15,000 hymn tunes in use between

1500 and 1820

Investigator: Harald Görannson

Place: Royal Academy of Music, Stockholm

Symphonies/LaRue

Title: A Catalogue of Eighteenth-Century Symphonies: Vol I. IDENTIFIER Indiana University Press, 1988

Scope: identification and source files for all known symphonies from c. 1720 to

c. 1810

Head of project: Jan LaRue

Assistants: Kathryn Shanks, David Cannata

Place: New York University

Time: 1982--

Computer: Cyber 180 (NOS) **Encoding: MUSTRAN**

Walther Manuscripts/Schnell et al.

Title: Sources for the Music of J. G. Walther Purpose: to assemble tables of contents, thematic concordances, and stemmata for the sources of the music of Johann Gottfried Walther

Investigator: Christoph Schnell et al.

Place: St. Gall, Switzerland Software: Alpha/TIMES system

III. Analytical Methods, Tools, and Procedures

Cluster Analysis/Stepien and Logrippo

Title: "Cluster Analysis for the Computer-Assisted Statistical Analysis of Melodies," Computers and the Humanities 20 (1986)

Purpose: to explore the uses of cluster analysis [a method of classifying a set of entities] in the classification of melodies by pattern types

Repertory: monophonic songs

Measures: tonal density, interval density,

melodic similarity

Investigators: Bernard Stepien,

Luigi Logrippo

Place: University of Ottawa Dept. of Computer Science

Declarative Representations/Roeder

Title: Declarative Music Representations Purpose: to use computers in the logical representation of analysis and

composition

Investigator: John Roeder

Place: University of British Columbia

Computer: Apple Macintosh

Associated Literature: "A Declarative Model of Atonal Analysis", Music Perception [in press]

Fourier Index Sorting/Ferkova

Title: Some Possibilities in Computer Assisted Analysis of Melody and Tonal Harmony

Purpose: to explore translation of existing music-analytical procedures into algorithms for data processing, with special emphasis on Fourier index sorting for melodic analysis

Repertory: 554 melodies from Haydn

symphonies

Procedures: differentiation of ascending and descending segments and numerous other measures

Investigator: Eva Ferkova

Associates: Andrej Ferko, Marian Dudek Place: Slovak Academy of Science (Science of Art Institute), Bratislava

Duration of project: 1986-89 Computer: PDP-11/34 (RSX)

Software: custom

Encoding: modified ALMA

Associated Literature: doctoral thesis, Slovak Academy, Bratislava, 1986

Interactive Melodic Analysis/Schaffrath

Title: Interactive Melodic Analysis Purpose: to input, analyze, catalogue, classify and play one-part melodies and variants

Repertory: 4200 German songs, 1000 Chinese songs, and 500 ballads

Approach: to provide a summary set of descriptive attributes that can be searched in isolation or combination and used as a tool for studies from diverse points of view

Measures: interval frequencies, scale degree frequencies, ambitus, succession of cadence tones and stressed tones, comparisons of pitch successions

Investigator: Helmut Schaffrath Associate: Barbara Jesser Place: Essen University **Duration of project: 1985-90** Computers: IBM 3207; IBM PC Analysis Software: MAMMUT (PL/1) **Encoding:** ESAC (MIDI input)

Associated Literature: Articles by Schaffrath in Musikpädagogische Forschung 5 (1985), Musica 2 (1987), proceedings of the ICTN World Conference (1987) and the Lancaster Conference (1988); articles by Jesser in

ICTM proceedings (1987) and Musikpädagogische Forschung 8 (1988)

Layer Analysis/Wang Sen et al.*

Title: Analysis of Tone Structure in

Chinese Folk Melody

Purpose: classification of regional differences in relation to patterns of differentiation between melodic foundation, framework, and ornament tones

Investigators: Wang Sen, Zhou Haihong

Associates: Wong Wei, Feng Yankun Place: Central Conservatory of Music,

Beijing

Duration of project: 1988-89

Computer: IBM PC

Analysis Software: LSA [= Layer and

Structure Analysis]

Encoding: extended numeric

Associated Literature: "The Structure and Layer of Tones: The Possibilities of Stylistic Analysis Aided by the Computer"

[in progress]

Melodic Analysis/Bevil*

Title: MelAnaly: A Software Package and Query System for Comparative Analysis of British-American Folktunes

Purpose: to extend the study of the centonate process and to establish a means of enquiry and a central database for other researchers

Investigator: J. Marshall Bevil

Place: Houston, TX Duration of project: 1988

Computer: Apple IIgs (Apple II + for field)
Other devices: ImageWriter II printer
Analysis Software: custom, for array

scanning

Printing Software: Tunegraph (prints video images and hard copy of color-coded line

graphs)

Encoding: numeric (pitch, duration, stress)
Associated Literature: "A Genre-Specific...
Method of Comparative Melodic Analysis
for the Assessment of Relationships
between British-American Folksongs"
(talk given to the Sonneck Society, April
1988)

Melodic Scaling/ISTAR*

Title: Raga Classification

Purpose: Two- and three-dimensional scaling of ragas on the basis of computer

analysis of recorded music

Investigators: Bernard Bel, Wim van der

Meer

Place: Amsterdam and Marseilles

Duration of project: 1988

Computer: Apple IIe, Macintosh+

Software: Meloscribe (automatic notation)
Encoding: MMA (Melodic Movement

Analyser)

Melodic Similarity/Leppig

Title: Melodic Similarity

Scope: series of projects devoted to measuring melodic similarity between works Repertory: German 18th-century classical

and folk music

Measures: comparison of pitch profiles (absolute, with horizontal offset, with vertical offset, with suppression of repeated notes, with accented notes only)

Investigator: Manfred Leppig Place: University of Duisburg, Faculty of Mathematics

Encoding: numeric

Associated Literature: "Musikuntersuchungen im Rechenautomaten," Musica 2
(1987), 140-150; "Tonfolgenverarbeitung
in Rechenautomaten: Muster und
Formen," Zeitschrift für Musikpädagogik
42 (1987), 59-65; "Die Untersuchung
musikinterpretierbarer Eigenschaften
in Zahl- und Zeichenfolgen, Eine Sachmotivation zum Programmierunterricht,"
Beiträge zum Mathematikunterricht 1 (1987);
"Programmieraufgaben für Zahl- und
Punktfolgen mit Deutungen in der Musiktheorie (II)," BzMU 2 (1988) [in press]

Melodic Variation/Boroda

Title: A Methodology for Quantitative Investigation of Melodic Variation in

Song Segments

Purpose: to establish a methodology for quantifying variations between melodic segments both within one work and between works; uses R. K. Zaripov's concept of intervallic-metrical structure

Repertories: 500 melodies from works by Schubert, Dunayevsky, and Russian folksongs

Investigator: Moisei Boroda

Place: Conservatory of Music, Tbilisi

Duration of project: 1988

Associated Literature: "A Methodology of Quantitative Investigation of Methods of Variation of Segments in Song Melodies" in Quantitative Aspects of the Systemic Organization of Text (in Russian, Tbilisi, 1987); "Construction of Frequency Lexicons of Musical Segments for Analysis and Modelling of Melodies" [by R. K. Zaripov; in Russian] in Science 41 (Moscow, 1984), 207-252

Musical Language/Boroda

Title: MUSLAN-A Systemic-Quantitative Approach to Musical Language

Purpose: to study general regularities (especially rhythmic ones) of musical thinking, metastylistic principles of the organization of repetitions in musical composition, general principles of the paradigmatic organization of melody, and interrelations between music and language

Investigator: Moisei Boroda Place: Tbilisi Conservatory **Duration of project: 1988-93**

Computer: Soviet

Associated Literature: "The Frequency Organization of the Musical Work and the Problem of Universals of Musical Language" in Applied Linguistics and Automatic Text Analysis [in Russian; Tartu, 1988]; "Rhythmical Models in Folk Melodies: Towards the Quantitative Approach" [in Russian; forthcoming in Quantitative Methods in Ethnomusicology and Music Theory (Moscow, 1988)]

Petri Nets/Camurri et al.

Title: Petri Nets as a Means of Describing Styles of Orchestration in the Seventeeth and Eighteenth Centuries

Purpose: one of a series of projects designed to show how Petri nets (which can describe asynchrony, nondeterminism, concurrency, causality, and hierarchy) can be used to describe musical processes

Investigators: A. Camurri, G. Haus, R.

Zaccaria

Place: Milan (Laboratorio di Inf. Mus.)

Duration of project: 1986-90 Operating System: UNIX

Software: MAP system (Musical Actors by Petri Nets; produces sound sample files)

Associated Literature: "Describing and Performing Musical Processes" in Human Movement Understanding, ed. P. Morasso and V. Tagliasco (Advances in Psychology 33), Amsterdam: North Holland, 1986, 335-357

Phrase Identification and Analysis/ Camilleri*

Title: Computer Generation and Description of Simple Tonal Melodies

Purpose: to employ the concept of perfect and imperfect phrases by Lidov and some rules of prolongation and reduction by Lerdahl and Jackendoff to describe and generate melodies

Investigator: Lelio Camilleri Place: CNUCE (Pisa) and Florence

Conservatory

Duration of project: 1987--Computer: IBM 8081, VM 370

Software: custom **Encoding: TELETAU**

Associated Literature: "Theory of a Rule-

Based System for Music Analysis"

[forthcoming]

Polyphonic Analysis/Böker-Heil*

Title: MUSAN: A Program for Elementary Analysis of Harmonic Intervals in Late

Medieval Polyphony

Scope: creates relational graphs and frequency tables differentiating specific intervals and kinds of motion

Investigator: Norbert Böker-Heil Place: Staatliches Institut für Musikforschung, Berlin (West) Duration of project: 1985--

Hardware: DEC mainframe, Benson 1233

plotter

Rhythmic Models/Boroda*

Title: Rhythmic Models of Musical Language
Purpose: use of Zipf-Mandelbrot law to
show significant isomorphisms in
rhythmic organization between literary
and musical texts

Repertory: folksongs of Georgia and Armenia Measures: motivic frequency and repetition

Investigators: Moisei Boroda,

A. A. Polikarpov
Associate: V. Detlov
Place: Tbilisi Conservatory
Completion of project: 1984
Associated Literature: "The ZipfMandelbrot Law and Units of Different
Text Levels" in Quantitative Linguistics
in Automatic Text Analysis [in Russian
and Estonian; Tartu, 1984]

Segmentation Rule System/Camilleri

Title: An Expert System for Musical Segmentation and the Harmonic Analysis of Tonal Music

Purpose: to create a tool for music analysis based on a rule system and to verify the theoretical value of the rules

Investigator: Lelio Camilleri

Associates: Chiara Duranti, Francesco

Carreras

Place: CNUCE (Pisa) and Florence

Conservatory

Duration of project: 1987-89 Computer: IBM 8081, VM 370

Software: custom, using ESDE (Expert System Development Environment) Encoding: TELETAU (enhanced) Associated Literature: "Psychological and Theoretical Issues of Musical Segmentation" [Camilleri, forthcoming]; Analysis of Grouping Structure [thesis by Duranti, forthcoming]

Set Theory/Solomon

Title: Set Theoretic Analysis Software
Purpose: to create software for the
analysis of chords and melodies based
on set theory

Investigator: Larry J. Solomon

Place: Tucson, Arizona

Computers: Apple II, IBM PC, DEC Associated Literature: "The List of Chords, Their Properties and Use in Analysis," *Interface* 11 (1982), 67-107

Structural Notations/Pope

Title: "Music Notations and the Representation of Musical Structure and Knowledge", Perspectives on New Music (1986), 156-189

Purpose: investigates the use of tree structures, state machines, control flow models, Petri nets, predicate transition nets and other data structures that can be supported by the Doubletalk music programming system under development by the author

Investigator: Stephen Pope

Place: ParcPlace Systems, Palo Alto, CA

Tonal Melody/KWilliams

Title: Analysis Package for Tonal Melody
Functions: isolates pitch strings, scaledegree strings, interval strings; identifies
metrically equivalent rhythmic patterns;
performs melodic reduction; finds latent
melodic similarities

Investigator: J. Kent Williams

Place: Univ. of North Carolina, Greensboro

Duration of project: 1982-88

Computer: VAX/VMS, MS-DOS machines

Software: in SPITBOL Encoding: MUSTRAN

Associated Literature: "Themes Composed by Jazz Musicians of the Bebop Era: A Study of Harmony, Rhythm, and Melody," Ph.D. dissertation, Indiana University, 1982 (UMI dissertation #8308888)

Melodic Scaling

Three-dimensional map of 14 recordings of Indian music (Bernard Bel and associates)

- 1. Multani by Bhimsen Joshi
- 2. Multani by Hirabai Barodekar
- 3. Multani by Wahid Khan
- 4. Multani by Nupur Roy Chaudhuri
- 5. Todi by Z. M. Dagar
- 6. Todi by Nupur Roy Chaudhuri (1st recording)
- 7. Todi by Nupur Roy Chaudhuri (2nd recording)
- 8. Todi by Kesar Bai Kerkar
- 9. Todi by Faiyaz Khan
- 10. Todi by Omkarnath Thakur
- 11. Todi by Mallikarjun Mansur
- 12. Todi by Kishori Amonkar
- 13. Vibhas by Kishori Amonkar
- 14. Vibhas by Malikarjun Mansur

Todi and Multani both use the scale C Db Eb F# G Ab B, though in different melodic sequences. Vibhas uses the scale C Db E G A. Multani is located distinctly in the "South-West", while Vibhas is situated in the "mountains". The position of the recordings 11-14 (both artists belong to the Jaipur school) indicates that the distance between the pieces of music is not exclusively a factor of different ragas but that there exists a consistency of individual and school interpretation.

Comparative Melodic Analysis

Superimposition of related melodic profiles on a graph (J. Marshall Bevil)

COMPARISON #1 CONTROL: NTHGY/CHANDL ### TEST: SHGR/BRNH2

PRIMARY CELL DETAILS

INCIPIT MEDCLOS PINEOPN FINAL

123 123 123 123

X X X X X X X DIRECT, PITCH
1-2 CROSS
2-1 CROSS
DOUBLE-CROSS
3-1 RESOURCING

3-1 RESEQUENCING
3-2 RESEQUENCING
X X X X X X X X DURATION

STATISTICAL SUMMARY AND CONCLUSIONS, SHGR/BRNH2 TO MTHGV/CHANDL

X STRESS

< PC > P: 67 D: 58 S: 75 PD: 33 PS: 50 DS: 58 PDS: 33
< CT > EE: 82 (BE): 9 (SE): 18 BB: 50 (BS): 8 (SB): 8 SS: 39 AV: 57

CLOSE RELATIONSHIP

X X XXX XXX

Results, comparative array scan for two melodies.

Layer Analysis

Differentiation of melodic foundation, framework, and embellishment in Chinese folk music (excerpt from a recent paper by Wang Sen et al.)

In this graph, "2" and "5" constitute the first basic layer because they assume a central status in the formation of the music. They are designated "framework tones". They second layer consists of "framework supporting tones" (1, 3, 6). A distinction is drawn between "principal supporting tones" and "subordinate supporting tones". "7", which has no structural function, is an "embellishing tone".

Phrase Identification and Analysis

Computer implementation of Lidov's distinction between perfect and imperfect phrases (Lelio Camilleri)

Perfect phrase structure

Imperfect phrase structure

Polyphonic Analysis/1 (Norbert Böker-Heil)

Musical score of Anthonello de Caserta's "Beauté parfaite"

BEAUTÉ PARFAITE

Anthonello de Caserta

Polyphonic Analysis/2 (Norbert Böker-Heil)

- A. Horizontal bar graph of the score ["CAN" = Cantus, "CON" = Contratenor, "TEN" = Tenor].
- B. Vertical bar graph, showing intervals between voice parts. The symbols beneath this bar graph distinguish parallel, contrary, and oblique motion and also indicate direction (rising or falling).

Reproduced from a three-color original

Polyphonic Analysis/3 (Norbert Böker-Heil)

Frequency counts of intervals [R = reine (perfect), K = kleine (minor), G = grosse (major)]

Reproduced from a three-color original

Polyphonic Analysis/4 (Norbert Böker-Heil)

Subtotals and totals for the work: the columns to the left of the first summary column represent perfect intervals, the next four sections represent imperfect intervals, and the rightmost section represents dissonant intervals. These types are coded green, red, and black throughout the output.

Reproduced from a three-color original

Stress Pattern Identification

Representation of short, intermediate, and long syllables used to differentiate rhythmic patterns in text setting (Katherine Rohrer)

Relative syllable lengths:

o = short

o. = intermediate

o: = long

USES OF FORMULA I (7)) IN LANIER'S "HERO AND LEANDER"

 Lines beginning with three unstressed (and therefore short) syllables, for which Formula I is uniquely appropriate:

that have been oft

TOTAL:

nor com'st thou yet

(enclitic between 2 and 3)

0 0. 0. 01

who holds thee, cru[el?] (enclitic between 2 and 3)

0 0. 0. 0. 10. .

the rosy-finiger'dl o o.o. o. [o.]

[And similarly:]

my imprecations]

with faithless lines
thy chiefest calm

Leander's thine
the wary eyes
and even now
and tempests black
through cloudy night

TOTAL: 11

3. Lines which have a stress on positions 2 and 4 and a word boundary between positions 2 and 3, and which therefore would be better set as \(\begin{align*} \lambda \lambda \\ \lambda \end{align*} \\ \lambda \end{align*}

in these my lan(guishing)

0 01 0 0.

if far from hence

[And similarly:]

upon thy na[tive]
invades the hor[ror]
ye Gods, 'tis so!
and seas my woe
forgets that e'er
retire your fu[ry]
and here beneath
in spite of fate

TOTAL: 10

Vivaldi aria text contrafacta

Two examples in order of declining degrees of similarity (John Hill; Savvy PC relational database software)

Example 1. Two obviously similar texts:

Siroe rè di Persia (Ferrara, Carnevale, 1739), 1/16/1 Laodice sung by Anna Cosimi Configuration of lines: 7 7t 7t 5 7 7 7 5

Parto confusa anch'io
Ne sò quel che sarà;
Non ho più libertà,
Non ho più pace.
Vorrei del fato mio
Scoprir quall'è il tenore,
Ma timido il mio core
E pena, e tace.

Example 2. Elaborate parody:

Il Tamerlano
(Verona, Carnevale, 1735), 2/10/1
I:Tn, Giordano 36
Quartet
Configuration of lines:
8 8 4 8t 8t 8 8 4 4 4 5
8t 8t 8t 8t 8t 3 5 3 4

Si crudeli questo è l'amore D'un tiranno, inique core. Mostro indegno Dispietato senza fè. Morte al padre, oh Dio! perchè Cosl barbara sentenza? Non è degno di clemenza Tanto fasto Tanto orgoglio Morte attendi E morte voglio Numi, aita oh Dio! pietà. Nò non sà, che sia pietà. Io non voglio sua pietà. Nò non merita pietà. Questa è troppo crudeltà. Pur al fin La mia morte Pur al fin

Nostra morte.

Orlando furioso (Vicenza, 1738), 1/01/1 Angelica sung by Anna Cosimi Configuration of lines: 7 7t 7t 5 7 7 7 5

Ardo ferita, oh Dio,
Nè so quel, che farà
Non ò più libertà,
Non ò più pace.
Pa, si, che l'idol mio
Al sen mi torni amante,
Ma quant'io son costante
Alla sua face.

Armida al campo d'Egitto (Venezia, Carnevale, 1738), 2/14/1 [No score survives] Quartet Configuration of lines: 8 8 8t 8t 8 8 4 4 4 5 8t 8t 8t 8 8 4t 5 5 8t 8t 8t

Morte a me Fiero rigore Mi condonna traditore.

Non sei degno di mercè.
Numi, cieli, oh Diol Perchè
Così barbara violenza?
Donna rea la mia innocenza
Tanto fasto?
Tanto orgoglio?
Morte attendi
E morte voglio
Morte, oh Diol Ah nò pietà.
Non è tempo di pietà.
Questa è troppa crudeltà.
La costanza, o la fortezza.
Il rigore, la fierezza.
Del tuo cor.
Della mia sorte
Dell'alma ingrata
La tua morte abbatterà.

In this database environment spelling, orthography, and punctuation are ignored in seeking matches. A coefficient of similarity calls the user's attention to those cases in which the extent of matching text in ostensibly independent arias exceeds the limits of chance.

In Example 1, it can be deduceds that Anna Cosimi sang the aria "Parto confusa anch'io" in Vivaldi's <u>Siroe</u> (1739) to the same music with which she sang "Ardo ferita, oh Dio" in Vivaldi's <u>Orlando furioso</u> (1738). [One general finding is that first lines are more commonly changed than subsequent lines.]

Motivic Frequency (M. G. Boroda)

A. Numerical measures of motivic frequency (n) and repetition (n1, n2, n3) in eighteenth- and nineteenth-century instrumental music as shown in "Die melodische Elementareinheit" (Quantitative Linguistics 15, Bochum, 1982)

	2	3	4	5	6	7	8	,	10	11	12	13	14	15	16	17
lfd. Nr.	Materialquelle	Ho	Pmax	'n	n*	6	n,	nţ	61.	n ₂	nş	62	n,	nş	4,	n
1.	J.S. Bach (1685-1750). Präludium und Puge Nr. 13 BWV 858; aus dem Wohltemperierten Klavier, 1.Teil (abgek.: WTK 1).	615	0.0910	186	153.0	21.6	105	93.0		31				15.5	-22.6	0.565
2.	ders. Priludium und Puge Nr. 20 BWV 865; WTK 1.	1422	0.1958	296	252.0	17.45	192	126.0	58.4	39	42.0	-7.2	16	21.0	-23.8	0.648
3.	ders. Pr#ludium und Fuge Nr. 2 BWV-871; WTK 2.	671	0.1430	168	145.0	15.8	96	72.5	32.4	26	24.2	8.3	,	12.1	-25.8	0.572
4.	ders. Priludium und Fuge Nr. 22 BWV 891; WTK 2.	1430	0.1350	310	272.0	13.6	191	136.0	41.3	26	45.0	-42.0		22.7		0.616
5.	G.F. Händel (1685-1756). Puge für Orgel Nr. 2 G-Dur.	765	ó. 1070	201	173.0	16.2	120	86.5	38.8	28	28.8	-2.8	•	14.0	-42.9	0.598
6.	D. Scarlatti (1685-1757). So- nate Nr. 1 (Eählung der Edition Peters).	250	0.1190	72	72.0	0.0	37	36.0	2.8	,	12.0	-25.0	3	6.0	,	0.515
7.	ders. Sonate Nr. 5,	182	0.0659	60	67.0	-10.5	28	33.5	-16.2	16	11.2	42.9	١	5.6	-46.6	1
8.	ders. Sonate Nr. 9. (Ausgabe von B. Holdenweiser).	156	0.1090	53	52.0	1.9	20	26.0	-23.1	"	8.7	27.0	8	4.3	. 84.5	0.378
9.	ders. Sonate Nr. 13. (Ausgabe von L. Nikolaev).	568	0.0986	190	139.0	36.8	100	69.5	43.9	39	23.2		17		46.6	
10.	ders. Sonate Nr. 25 (Edition Peters).	107	0.0655	51	47.2	8.1	25	23.6		15			3	3.4		0.490
11.	G. Tartini (1692-1770). Sona- te g-moll für Violine und Klavier.	8 2 8	0.0652	218	204.0	6.9	60	102.0	-41,2	85	34.0	150.0	11	17.0		
12.	J. Haydn (1732-1809). Sympho- nie Nr. 45 fis-moll "Abschieds- Symphonie".	1304	0.0437	340	317.0	7.3	164	158.5	3,5	65	52.8	23.1	25	28.5	-6.0	0.483
13.	W.A. Mozart (1756-1791). "Eine kleine Nachtmusik" KV 525.	1260	0.1143	205	252.0	-18.7	60	126.0	-52.4	6,1	42.2	44.6	13	21.1	-38.4	0.293
14.	ders. Fuge g-moll für Klavier.	731	0.1370	199	157.0	26.7	119	78.5	51.6	33	25.8	16.3	10	12.9	-14.7	0.548
15.	ders. Sonate für Klavier Nr. 10.	1249	0.0509	296	297.0	0.0	95	149.0	-36.2	98	49.5	98.0	14	24.8	-43.6	0.321
16.	J.G. Albrechtsberger (1736-1809). Fuge c-moll.	693	0.2160	168	138.0	20.9	111	69.8	70.0	17	23.0	-21.8		11.5	-30.8	
17.	L. van Beethoven (1770-1827). Sonate für Klavier Nr. 19.	. فقدر	0.0565	151	163.0	-7.4	60	81.5	-26.4	36	27.2	32.4	13	13.6	-4.4	0.400

Рис. 3, Описание частотной структуры музыкальных текстов законом Цинфа-Мандельброта (1): а) Г. Ф. Гендель. Фуга В 2 для органа; 6) М. Генди. Сымфония В 45 ("Промальная"); в) Ф. Шопек. Соната В 3. Обозначения те же, что на Рис. 1. Мантаб логарифический.

B. Graphic descriptions of motivic frequency in (a) Handel's Fugue No. 2 for Organ (No. 5 above), (b) Haydn's Symphony No. 45 (No. 12 above), and (c) Chopin's Sonata No. 3 as shown in "The Zipf-Mandelbrot Law . . ." in Quantitative Linguistics in Automatic Text Analysis (Tartu, 1984)

IV. Analysis of Specific Repertories

A. Historical Repertories

Ambrosian Chant/Halperin

Title: Analysis of Ambrosian Chant
Purpose: comparison of stylistic traits of
different elements of the repertory with
special emphasis on the melodic segment (by analogy to the linguistic
morpheme)

Repertory: antiphonary of c. 1200 A.D. Procedures: note and interval counts, phrase lengths, melodic features (leaps, pentatonicism, initial and final interval schemes, rates of melismatics), forward and reverse segment profiles

Results: statistical tests show correlations between stylistic traits and liturgical function, also between melodic behavior

and modal ambience Investigator: David Halperin Place: Tel-Aviv University Computer: mainframe

Software: custom, reproduced in thesis Encoding: numeric representation of

relative pitch

Associated Literature: "Contributions to a Morphology of Ambrosian Chant: A Computer-Aided Analysis of the pars hiemalis according to British Museum Add MS 34209 with a Package of Computer Programs for the Analysis of Monophonic Music," Ph.D. thesis, Tel-Aviv University, 1986

Bartok's Harmony/Li

Title: Harmonic Organization of Bartok's

String Quartets

Purpose: to use an investigation of the harmonic features of Bartok's string quartets as the basis for developing a system for harmonic analysis of string and wind ensemble music

Investigator: Betty Li

Place: Hong Kong Baptist College

Duration of project: 1987-89 Computer: VAX mini 11/750

Software: in SPITBOL

Encoding: custom (alphanumeric)

Byrd and Tallis/Morehen

Title: Sixteenth-Century English
Polyphony: The Cantiones Sacrae (1575)
of Thomas Tallis and William Byrd

Investigator: John Morehen Place: University of Nottingham Duration of project: 1983--Computer: ICL 2988

Associated Literature: "Computer-Assisted Musical Analysis: A Question of Validity," Proceedings of the International Computer Music Conference 1986

German Lute Tablature/Charnassé

Title: Automatic Transcription of German

Lute Tablature

Aims: translation of tablature into staff notation; polyphonic analysis
Investigator: Hélène Charnassé
Associate: Bernard Stepien

Place: ERATTO (Paris); Ottawa Duration of project: 1986-91 Other devices: Epson printer

Support software: TURBO-PROLOG Analysis software: Luth (custom)

Encoding: SIT (custom)

Associated Literature: "Une Tentative d'introduction de l'informatique en musicologie" in Aspects de la recherche musicologique au C.N.R.S. (Paris, 1984), 179-195; "Automatic Transcription of Sixteenth-Century Notation" in CHUM 90/3 (1986), 179-190; "Le Point des travaux de l'Équipe ERATTO" in Informatique et Musique (Ivry: ELMERATTO, 1988), 129-145

Goudimel's Harmonic Grammar/Halperin

Title: The Harmonic Grammar of Homophonic Psalm Settings Investigator: David Halperin Place: Tel-Aviv University Duration of project: 1988--Computer: IBM PC/XT

Late Medieval Polyphony/Böker-Heil

Title: Towards the "ars subtilior": Investigation of the Practice and Development of Counterpoint between 1340 and 1430

Investigator: Norbert Böker-Heil (Berlin/

West)

Associates: Ursula Günther (Göttingen)

Duration of project: 1984-90

Computers(OS): PDP 11/34 (RSX11-M),

Macintosh II

Other devices: Benson 1233 plotter, Yamaha FB-01 synthesizer, Synclavier (proof-hearing)

Associated Literature: "Klingende Dokumentation aus dem Synthesizer," Jahrbuch des Staatlichen Institut für Musikforschung (Preussischer Kulturbesitz) 1983/84 (1987), 27-33

Schubert/Nettheim

Title: Analysis of the Works of Schubert
Purpose: to provide basis for comparison
with works of other composers
Investigator: Nigel Nettheim

Place: Sydney Conservatorium Computers: IBM PC, Toshiba 1340

Troubadour Music/Halperin

Title: A Structural Analysis of Troubadour Music

Procedures: evaluation of interval frequencies, standard phrases, chord patterns, initial and final formulas, melodic segmentation

Results: stylistic traits examined in relation to internal behavior, modal ambience, and characteristics of other monophonic repertories

Investigator: David Halperin Place: Tel-Aviv University

Software: custom, reproduced in thesis Encoding: numeric representation of

relative pitch

Associated Literature: "A Structural Analysis of Troubadour Music," M. A. thesis, 1978

Troubadour Music/Steel

Title: Stylistic Analysis of Troubadour Music

Scope: to assess relationship of this repertory to chant, cantigas de Santa Maria, trouvere and Minnesinger repertory

Investigator: Matthew Steel **Place:** University of Michigan

Computer: IBM PC/XT, mainframe

Software: SPIRES Encoding: custom

B. Non-traditional and non-Western Repertories

Jazz--Chord Sequences/Steedman and Cooper

Title: Jazz Chord Sequences

Scope: development of a generative grammar in the context of formal rule systems for computational analysis Investigator: Mark J. Steedman

Associate: Robin Cooper
Place: University of Edinburgh
Associated Literature: "A Generative
Grammar of Jazz Chord Sequences,"
Music Perception 2/1 (1984), 53-78

Jazz-Melodic Analysis/KWilliams

Title: Analysis of Jazz Melody

Scope: discusses a series of programs that perform rhythmic and melodic tests

on a jazz repertory and discusses relation to other literature

Investigator: J. Kent Williams

Place: University of North Carolina,

Greensboro

Computer: mainframe Software: custom Encoding: MUSTRAN

Associated Literature: "A Method for the Computer-Aided Analysis of Jazz Melody in the Small Dimensions," Annual Review of Jazz Studies 3 (1985),

41-70

Jazz--Rule Systems/Giomi and Ligabue

Title: A Software Tool for Generation and

Study of Jazz

Purpose: to define a system of rules capable of providing models of jazz improvisation to support systematic

study of the jazz idiom

Investigators: Francesco Giomi, Marco

Ligabue

Place: CNUCE (Pisa), Florence

Conservatory

Duration of project: 1985-88

Computer: IBM 3081 - VM SP/REL4

Encoding: TELETAU

Associated Literature: "Software for Studio Generation of Jazz" [in Italian], CNUCE internal report #C88-06

Tabla Music/Kippen

Title: A Computer-Aided Social Anthropological Analysis of a Music System

Purpose: to identify the structure of human thought specific to the creation, performance, and appreciation of the music of the North Indian tabla

Investigator: James Kippen

Place: Belfast, NI, and Lucknow, India

Duration of project: 1986-88

Software: Bol Processor (developed by

B. Bel and author)

C. Analysis of Text Setting

Dutch Strophic Songs/Grijp

Title: Voetenbank [Footbank]

Purpose: to create a database and catalogue of strophic forms of 6000 Dutch songs from the early seventeenth century

Investigator: Louis Peter Grijp Associates: Clara Strÿbosch, Johan Koisteeg, Rudolf Rasch

Place: Utrecht University
Duration of project: 1986-1990
Computer: Olivetti M28 (MS-DOS)0

Database Software: RBase

Associated Literature: "'Voetenbank':

Een methode om melodieën te zoehen," Tijdschrift van de Vereriging voor Nederlandse Muziekgeschiedenis 34/1 (1984), 26-48

English Declamation/Rohrer*

Title: Stress Pattern Identification in English Declamation

Purpose: comparative study of stress in declamatory settings of English text Investigator: Katherine T. Rohrer

Place: Columbia University

Computer: IBM PC

Associated Literature: "The Myth of English Declamatory Style," [AMS,

New Orleans, 1987

Text Parody/JHill

Title: Theatrical Music and Text Parody in

Early Monodic Sources

Purpose: to match monody texts with word

books from theatrical productions

Investigator: John Hill Place: University of Illinois Computer: IBM PC/AT Database Software: Savvy PC

Vivaldi Arias/JHill*

Title: Self-Borrowing in Vivaldi's Operas Scope: index of 3700 complete aria texts

from 128 opera productions with which

Vivaldi was associated

Purpose: to identify all instances of text as evidence of musical borrowing Procedure: after entry of full texts,

probable matches are displayed; after user decisions, accepted matches are

recorded in a separate file Investigator: John Hill Place: University of Illinois Computer: IBM PC/AT

Database Software: Savvy PC

D. Analytically Oriented Databases

Bach/CCARH

Title: Bach Database

Purpose: to create a machine-readable version of all the musical works of

J. S. Bach

Current contents: 48 keyboard works, 15 orchestral works, B-Minor Mass,

passions, 69 cantatas

Data entry: Edmund Correia, Steven

Rasmussen Place: CCARH

Duration of project: 1985--

Computer(OS): HP 1000 (IBYCUS) Other devices: Epson dot matrix printer,

HP LaserJet

Software: custom (by Walter B. Hewlett)

Encoding: custom

Associated Literature: "Databases and the Practice of Musicology," Proceedings of the Fourteenth Congress of the International Musicological Scoiety, Bologna, 1987 (1988)

Chinese Folksong/Beijing Conservatory

Title: Database of Chinese Folksong

Investigator: Zhang Bo Yu

Associates: Wang Xin Hua, Xu Bin, Wang

Oing

Place: Conservatory of Music, Beijing

Duration of project: 1985-88

Computer: IBM PC

Encoding: ESAC (Essen Associative Code)

Corelli/CCARH

Title: Corelli Database

Purpose: to create a machine-readable version of all the works of Arcangelo

Corelli

Current contents: 72 instrumental works

(Opp. 1-6)

Data entry: Frances Bennion

Place: CCARH

Duration of project: 1986-87

Computer(OS): HP 1000 (IBYCUS) Other devices: Epson dot matrix printer,

HP LaserJet

Software: custom (by Walter B. Hewlett)

Encoding: custom

Handel/CCARH

Title: Handel Database

Purpose: to create a machine-readable

version of all the works of

G. F. Handel

Current contents: 42 instrumental works

(Opp. 2, 3, 5, 6 et al.), one opera

(Radamisto)

Data entry: Frances Bennion Duration of project: 1987--

Computer(OS): HP 1000 (IBYCUS)
Other devices: Epson dot matrix printer,

HP LaserJet

Software: custom (by Walter B. Hewlett)

Encoding: custom

LIAO/Essen

Title: LIAO: a Database of

Chinese Folksongs

Purpose: to create a database of 1000 Chinese folksongs Investigator: Helmut Schaffrath Place: Hochschule, Univ. of Essen

Duration of project: 1986--Computer: IBM 3207; IBM PC

Software: custom

Encoding: ESAC (Essen Associative Code)

LIED/Essen

Title: LIED: a Database of German Folksongs

Current contents: 4200 German folksongs of the nineteenth century;

ballads edited by the German Volksliedarchiv will be used to

verify the methodology

Investigator: Helmut Schaffrath

Associate: Barbara Jesser

Place: Hochschule, Univ. of Essen

Duration of project: 1984--Computer: IBM 3207; IBM PC

Encoding: ESAC

Telemann/CCARH and Pennsylvania

State University

Title: Telemann Database

Purpose: to create a machine-readable

database of all the works of

G. P. Telemann

Current contents: 18 suites (*Tafel = Musik*),

24 cantatas (RISM T 394, 403) Editorial coordinator: Brian Stewart,

Penn. State

Data entry: CCARH staff Duration of project: 1987--

Computers (OS): HP 1000 (IBYCUS), IBM PC

Other devices: Epson dot matrix printer,

HP LaserJet

Software design: Walter B. Hewlett

TELETAU/Florence Conservatory

Title: TELETAU Music Library
Purpose: to provide machine-readable

versions of representative works of Western music from 1600 to the present

Current contents: 1000 works from Frescobaldi to Joplin and jazz Investigators: Lelio Camilleri, Giovanni Nencini, Pietro Grossi

Place: Florence and Pisa Duration of project: 1980--Computer: mainframe

Software: analysis and other support software for using the data can be

accessed online
Encoding: TAUMUS

Online access:

MUSIC3@ICNUCEVM.bitnet
Associated Literature: Studi Musicali:

Modalità operative del TELETAU Software Sperimentale per le TELEMATICA MUSICALE,

Release 1.0 (Pisa: CNUCE Division of

Musicology, 1986)

Musical Information Systems

The Center receives a significant volume of information from persons developing extensive systems for musical information processing. Some systems are design-oriented, while others are use-oriented. Some are intended primarily to support instructional programs, some to support acoustical research, and some to support basic research. We provide brief reports here on some of these efforts.

BEER SHEVA

Mira Balaban heads a team at Ben Gurion University in Beer Sheva, Israel, that is designing a music workstation based on multiple hierarchical views of music. The intention is that the workstation should serve as a kernel for music processing. The kernel can be extended easily for both theoretical and practical purposes.

The main piece of hardware is a Sun 3/50 workstation operating under UNIX control. LISP and a unique music code are used. Further information can be found in three internal reports from the State University of New York at Albany: TR-87-18, TR-87-27, and TR-87-28. The first, "The TTS Language for Music Description," will appear in the *International Journal of Man-Machine Studies*. Broader circulation of the other two--"Music Structures: A Temporal-Hierarchical Representation for Music" and "A Music Workstation Based on Multiple Hierarchical Views of Music"--is anticipated.

GHENT

At the Institute for Psychoacoustics and Electronic Music at the University of Ghent, Marc Leman is investigating the possibilities of parallel distributed networks for music processing. His work is based on an IBM PC and transputer system. An account is given in "Neural Networks in Music Research," which is report No. 11 from the Institute's seminar in musicology.

HELSINKI

The Helsinki University Music Analysis and Composition (HUMAC) system is concerned with the development of software tools for composition, analysis, and teaching. One practical result of their effort is the draft porposal for a "Time-Stamped Music File Format" [see description under News: Standards].

LANCASTER

The development of tools to facilitate the writing of computer assisted learning programs in music is one of the goals of the Centre for Research into the Applications of Computers to Music at Lancaster University. Another goal is to work towards a computer model of music that reflects fluidity and flexibility of musical cognition. Alan Marsden, Anthony Pople, and Roger Bray are involved in the Centre's works. Articles by Marsden and Pople are forthcoming in *Interface* and *Contemporary Music Review*.

MILAN

The team headed by Goffredo Haus and Luigi Finarelli at the Laboratorio di Informatica Musicale (University of Milan) continues work on the design and implementation of a workstation for musical analysis and music printing. The system is based on a Macintosh II microcomputer with custom encoding and software for analysis. Printing is implemented on Apple Laser Writer and ImageWriter printers and uses the Adobe "Sonata" font.

Current interests include the development of two-user environments, provisions for the use of external musical databases, quick encoding with multiple devices (music keyboard, pedals, computer keyboard, and mouse), and typographical refinements of the score. Details are provided in the talk "A Musicological/Publishing Workstation for the Processing of Musical Texts", which will appear in the proceedings of the 1988 International Computer Music Conference (to be held in Cologne in September 1988).

OSLO

A multifaceted program in music representation, printing, and analysis is being pursued in the MUSIKUS project at Oslo University. Analytical routines can investigate the harmony of chorales, explore melodic and rhythmic procedures jointly, and perform procedures suited to atonal and Norwegian folk music. The booklet "Music Encoding and Analysis in the MUSIKUS System" by Arvid Vollsnes and Tor Sverre Lande is available from the University (Blindern, N-0316 Oslo 3).

PADUA

The Centro di Sonologia Computazionale at the University of Padua, founded in 1972, has been closely associated with the biannual festival of contemporary music (the Biennale) in Venice. In 1980 a Laboratorio per l'Informatica Musicale (LIMB) was opened. A language called MUSICA has been used for the encoding of traditional scores, which have been used in synthesis projects. A series of one-week courses of study are in progress from July through November 1988. The Center also conserves a significant number of programs written to generate electronic works and hopes to preserve this collection for the purpose of facilitating the study of the compositional process in electronic music. The Center is on Via S. Francesco 11, 35121 Padua, Italy.