30 Short Musical Examples Encoded in MEI

Selected and typeset in SCORE by Craig Sapp
Encoded into MEI by Perry Roland

February 2010

1 beam-break
Demonstration of how to break a beam down to the sixteenth-note level and how to indicate two triplet "3" marks on a beam. Beethoven's piano sonata no. 5 in C major, op. 10/1, mvmt. 2: Adagio molto.

2 beam-grace
Demonstration of how grace notes interact with <beam> elements. The first subexample shows how to place a grace note inside of a grouping of beamed regular notes. The second subexample shows how beamed grace notes are represented within a group of regular notes.

3 beam-secondary
Demonstration of how to break secondary beams. The first subexample shows a beam without breaks. The second subexample shows a break for every three notes. The third subexample shows a break for every two notes.

4 chord-artic
Demonstration of how to encode articulations on single notes and on chords. There are four staccato marks in this example applied to six notes.

5 chord-bidur
Demonstration of how to encode notes in a chord which do not all have the same duration. This example contains an arpeggiated chord containing two quarter notes and one half note. The logical duration of the chord is a half-note. This example is taken from Mozart's piano sonata no. 6 in D major (K-284 / K-sup: -284 / K-sup: -284 / K-sup: 205b), mvmt. 3, variation 4 (Alte Mozart-Ausgabe).

6 chord-secods
Demonstration of how to encode chords with the same pitches, but with different arrangement of seconds along the stem.

7 layer-lhrh
Demonstration of how to encode a single line of music which is displayed in multiple orthographic layers, but a single perceptual (analytic) layer. Stem directions in this example suggest which hand should play the notes. Beethoven piano sonata no. 2 in A major, op. 2, no. 2, mvmt. 4: Rondo grazioso.

8 layer-lhrh2
Example of a layer which starts out in one staff and then changes to another in a measure. Example from Beethoven's piano sonata no. 2 in A major, op. 2, no. 2, mvmt. 4: Rondo: Grazioso.

9 layer-lhrh3
Demonstration of a melody spanning two staves, and layers on a single staff with stems going the same direction. Example from Beethoven's piano sonata no. 4 in E flat major, op. 7, mvmt. 4: Rondo: Poco allegretto grazioso.

10 layer-lhrh4
Demonstration of how to encode three musical lines on two staves when the middle line transfers to a different staff half-way through a measure. Beethoven piano sonata no. 4 in E flat major, op. 7, mvmt. 1: Allegro molto con brio.

11 layer-lhrh5
Demonstration of cross-staff layers. Beethoven piano sonata no. 4 in E-flat major, op. 7, mvmt. 1: Allegro molto con brio.

12 layer-xstaff
How can/should this example be encoded in terms of staff layers? Example is from Beethoven piano sonata no. 8 in C minor, Op. 13, mvmt. 2: Adagio cantabile. The right hand moves to the bottom staff in the middle of the second measure.

13 layer-xchord
Demonstration of how to encode notes of chords which occur on two different staves. Example from Mozart's piano sonata no. 1 in C Major, K 279, mvmt. 2: Andante.

14 layer-xstaff
Demonstration of an unusual interaction of layers across staves. Note in particular that the first treble clef on the bottom staff comes before the end of the bar so that a note from the stop staff can be written in treble clef. Example from Joseph Haydn's keyboard sonata in G minor, Hoboken XVI-44 (Wiener Urtext no. 32), mvmt. 1.

15 layer-xtie
Demonstration of how to encode ties which cross layers. This example is from Chopin's mazurka in A minor Op. 17/4.

16 lyrics-syllab
The vocal part contains the original text and a translation. In the third measure, the translation has two syllables while the original language lyrics has one. This is reflected in the music with a quarter note for the original lyrics and two eighth notes for the translated lyrics. Similar double-stem notation is used for multiple verses when the number of syllables varies between the verses. Example from the piano reduction of Wagner's Rheingold.

17 note-caution
Demonstration of how to indicate a cautionary accidental. The first subexample has an E flat at the end of the second measure, but there is no accidental displayed, since it is contained in the key signature. The second subexample displays the flat, which is not technically required, but is provided for clarity to the performer.

18 ornament-fnum
Example of multiple finger numbers attached to an ornament (turn). From Beethoven's piano sonata no. 8 in C minor, op. 13, mvmt. 2: Adagio cantabile.

19 ornament-trill
Demonstration of how to encode trills with and without wavy lines after them. Also demonstration of how to encode accidental for upper neighboring tone on trill mark. Example from Joseph Haydn's keyboard sonata in D major, Hoboken XVI-33 (Wiener Urtext no. 34), mvmt. 1.

20 ornament-turn
Demonstration of how to encode turn ornaments. The example is from Beethoven's piano sonata no. 1 in F minor, op. 2, no. 1, mvmt. 2: Adagio. The first turn is centered above the note it applies to. The second turn in the next measure is centered "between" the note it is applied to and the following note in the layer. Both of the example turns have accidentals underneath them; the first has a natural sign which means play the lower diatonic note as a natural (B-natural). The second has a sharp sign underneath it which means play a sharpened lower diatonic tone (F-sharp). Turns can also have accidentals placed above them which indicate the chromatic alteration of the upper diatonic tone.

21 ornament-turn2
Demonstration of how to encode inter-note turn with a chromatic alteration of the lower and upper diatonic neighboring tones. Beethoven piano sonata no. 2 in A major, op. 2, no. 2, mvmt. 1: Allegro vivace.

22 rhythm-fractup
Demonstration of how to encode tuplet notes which contain rhythms which are not integer subdivisions of the whole note.

23 staff-keytime
Demonstration of key and time signature changes, how they interact with sections, and non-sequential performance sections.

24 staff-layers
Demonstration of staff layers, particularly of how invisible rests in this measure are encoded.

25 tie-finger
Demonstration of how to encode fingered slurs. This example is from Beethoven piano sonata no. 23 in F minor, Op. 57, mvmt. 4: Presto.

26 tie-finger2
Demonstration of finger pedaling with durations of notes explicitly written out. Beethoven piano sonata no. 3 in C major, mvmt. 1: Allegro con brio.

27 tie-xlayer
Demonstration of how to encode ties which cross layers (initial to medial, and medial to terminal are in different layers). Beethoven piano sonata no. 4 in E-flat major, op. 7, mvmt. 1: Allegro molto brio.

28 tuplet-ambg
 Demonstration of how to encode rhythms when the visual display of note rhythms is ambiguous.

29 tuplet-ambg2
Demonstration of how to encode rhythms when the visual display of note rhythms is ambiguous. This example is from Chopin's mazurka in A Minor, Op. 17/4. The notes in the top staff are quintuplet sixteenth notes, but they are displayed with a single beam rather than two beams. The tuplet notes are also cue-sized in the printed edition.

30 tuplet-nested
This example simulates a written out ornament played as a quintuplet 32nd notes within a triplet-eighth note pattern.
<xml version="1.0" encoding="UTF-8" standalone="no">
<oxygen SCHSchema="/..\mei19.1\ModularizationTesting/mei-all.rng">
<oxygen RNGSchema="/..\mei19.1\ModularizationTesting/mei-all.rng" type="xml">
<mei xml:link="http://www.w3.org/1999/xlink" version="1.9b">
<mehead>
<titlestmt>
<title>hand-edited</title>
</titlestmt>
<respsstmt>
<p>Transcoded from a MusicXML version 1.0 file on</p>
<date>2009-11-05</date> using an XSLT stylesheet (2mei v. 2.2.1).
</respsstmt>
<projectdesc>
<p>The MusicXML file was generated using SharpEye Music Reader 2.</p>
</projectdesc>
<revisionsdesc>
<change>
<respstmt>
<p>Transcoded from a MusicXML version 1.0 file on</p>
<date>2009-11-12</date>
</respstmt>
</change>
</revisionsdesc>
<mehead>
<score>
<scoredef meter.count="2" meter.unit="4" key.sig="4f" meter.rend="invis">
<staffdef n="1" lines="5" clef.line="4" clef.shape="F">
<midi.div="168" key.sig="4f"/>
</staffdef>
<staffgrp xml:id="P1" symbol="brace" label.full="Part_1">
<scoredef meter.count="2" meter.unit="4" key.sig="4f" meter.rend="invis">
<staff n="1" dur="0m+2.95"/>
<layer n="1">
<staff n="2" dur="0m+1.70"/>
<beam>
<phrase tstamp="2.75" place="above" startid="d1e656" endid="d1e723"/>
<chord xml:id="d1e481" dur="8" dur.ges="84" stem.dir="down">
<beam>
<note xml:id="d1e818" pname="f" oct="3" accid.ges="f"/>
<note xml:id="d1e889" pname="b" oct="3" accid.ges="f"/>
<note xml:id="d1e910"pname="a" oct="3" accid.ges="f"/>
</chord>
</beam>
<chord xml:id="d1e851" dur="6" dur.ges="6" stem.dir="down">
<accid value="n"/>
</chord>
</phrase></staff>
</layer>
</scoredef>
<section>
<measure n="1" xml:id="d1e12">
<staff n="1">
<layer n="1">
<rest xml:id="d1e41" dur="64" dur.ges="7" tuplet="i1"/>
<note xml:id="d1e68" pname="d" oct="4" dur="64" dur.ges="7" tuplet="m1" stem.dir="up" accid.value="n"/>
</note>
</staff>
<staff n="2">
<layer n="1">
<note xml:id="d1e92" pname="e" oct="4" dur="64" dur.ges="7" tuplet="m1" stem.dir="up" accid.value="f"/>
</note>
</staff>
<staff n="3">
<layer n="1">
<note xml:id="d1e125" pname="f" oct="4" dur="64" dur.ges="7" tuplet="m1" stem.dir="up"/>
</note>
</staff>
<staff n="4">
<layer n="1">
<note xml:id="d1e115" pname="g" oct="4" dur="64" dur.ges="7" tuplet="m1" stem.dir="up" accid.value="g"/>
</note>
</staff>
<staff n="5">
<layer n="1">
<note xml:id="d1e220" pname="a" oct="4" dur="64" dur.ges="7" tuplet="m1" stem.dir="up" accid.value="a"/>
</note>
</staff>
<staff n="6">
<layer n="1">
<note xml:id="d1e253" pname="b" oct="4" dur="64" dur.ges="7" tuplet="m1" stem.dir="up" accid.value="b"/>
</note>
</staff>
<staff n="7">
<layer n="1">
<note xml:id="d1e284" pname="c" oct="4" dur="64" dur.ges="7" tuplet="m1" stem.dir="up" accid.value="c"/>
</note>
</staff>
<staff n="8">
<layer n="1">
<note xml:id="d1e315" pname="d" oct="4" dur="64" dur.ges="7" tuplet="m1" stem.dir="up" accid.value="d"/>
</note>
</staff>
<staff n="9">
<layer n="1">
<note xml:id="d1e349" pname="e" oct="4" dur="64" dur.ges="7" tuplet="m1" stem.dir="up" accid.value="e"/>
</note>
</staff>
</section>
</score>
</mei>
<xml version="1.0" encoding="UTF-8" standalone="no"/>
<?oxygen SCHSchema="../../mei19.1/ModularizationTesting/mei-all.rng"/>
<?oxygen RNGSchema="../../mei19.1/ModularizationTesting/mei-all.rng" type="xml"/>
<mei xmlns:xlink="http://www.w3.org/1999/xlink" version="1.9b">
<meihead>
<filedesc>
<titlestmt>
<title/> </titlestmt>
<pubstmt/>
</filedesc>
</meihead>
<encodingdesc>
<projectdesc>
<p>Transcoded from a MusicXML version 1.0 file on</p>
<date>2009-11-09</date> using an XSLT stylesheet (2mei v. 2.2.1).</p>
<p>The MusicXML file was generated using SharpEye Music Reader 2.</p>
</projectdesc>
</encodingdesc>
<revisiondesc>
<change>
<respstmt>
<name>Perry Roland</name>
</respstmt>
<changedesc>
<p>hand-edited</p>
</changedesc>
<date>2009-11-17</date>
</change>
</revisiondesc>
<music>
<body>
<mdiv>
<score>
<scoredef meter.count="2" meter.unit="4" key.sig="1s"/>
<staffgrp>
<staff n="1" xml:id="P1" lines="5" clef.line="2" clef.shape="G" key.sig="1s"/>
</staffgrp>
</scoredef>
<section>
<measure n="1" xml:id="d1e12" right="invis"/>
<staff n="1">
<layer n="1">
<beam>
<note pname="d" oct="8" dur="8" stem.dir="down"/>
<note pname="e" oct="8" grace="acc" stem.dir="up"/>
<note pname="c" accid="s" oct="8" grace="acc" stem.dir="up"/>
<note pname="d" oct="8" dur="8" stem.dir="down"/>
<note pname="b" oct="4" dur="8" stem.dir="down"/>
</beam>
</layer>
</staff>
</section>
<slur tstamp="1" staff="1" startid="g1" endid="n1" place="below"/>
<slur tstamp="2" staff="1" startid="g3" endid="n3" place="below"/>
</measure>
</section>
</score>
</mdiv>
</music>
<xml version="1.0" encoding="UTF-8" standalone="no"?>
<?oxygen SCHSchema="../../mei19.1/ModularizationTesting/mei-all.rng"?>
<?oxygen RNGSchema="../../mei19.1/ModularizationTesting/mei-all.rng" type="xml"?>
<mei xmlns:xlink="http://www.w3.org/1999/xlink" version="1.9b">
<meihead>
<filedesc>
<titlestmt>
<title/>
</titlestmt>
<pubstmt/>
</filedesc>
<encodingdesc>
<projectdesc>
<p>Transcoded from a MusicXML version 1.0 file on
<date>2009-11-05</date> using an XSLT stylesheet (2mei v.
2.2.1).</p>
<p>The MusicXML file was generated using SharpEye Music Reader 2.</p>
</projectdesc>
</encodingdesc>
<revisiondesc>
<change>
<respstmt>
<name>Perry Roland</name>
</respstmt>
<changedesc>
<p>hand-edited</p>
</changedesc>
<date>2009-11-12</date>
</change>
</revisiondesc>
</meihead>
<music>
<body>
<mdiv>
<score>
<scoredef meter.count="4" meter.unit="4" key.sig="0"
meter.rend="invis">
<staffgrp>
<staffdef n="1" xml:id="P1" label.full="Part_1" lines="5"
clef.line="2" clef.shape="G" midi.div="1" key.sig="0"/>
</staffgrp>
</scoredef>
<section>
<measure n="1" xml:id="d1e12" right="invis">
<staff n="1">
<layer n="1">
<note xml:id="d1e34" pname="c" oct="4" dur="4" dur.ges="1"
stem.dir="up">
<artic value="stacc"/>
</note>
<note xml:id="d1e51" pname="e" oct="4" dur="4" dur.ges="1"
stem.dir="up">
<artic value="stacc"/>
</note>
<note xml:id="d1e68" pname="g" oct="4" dur="4" dur.ges="1"
stem.dir="up">
<artic value="stacc"/>
</note>
</layer>
</measure>
</section>
</score>
</mdiv>
</body>
</music>
</mei>
chord-bidur (p2)

[Diagram of a musical score with chords and notes]
chord-seconds
Transcoded from a MusicXML version 1.0 file on 2009-11-06 using an XSLT stylesheet (2mei v. 2.2.1).

The MusicXML file was generated using SharpEye Music Reader 2.

<!- It might be possible to infer the cautionary nature of the accidental when @value equals @accid.ges. -->

The accidental function is 'caution'.

<staff n="1">
ornament-fturn
ornament-turn
By unraveling the layer structure it can be determined which ties cut across layers and which do not. Those that do not can be represented with @tie, while cross-layer ties must be captured using tie elements. If desired, ties that do not cross layers may be represented using tie elements as well.
achieve the desired visual output. --> chords across layers and specifying stem directions to

\[\text{tie-xlayer}\]
When the tuplet duration is "irrational", @dur may contain multiple values that add up to the total duration. @dur.ges may be helpful here since it is based on the value of @midi.div. The markup here attempts to record the number of notes in a given amount of time. The written durations of the notes, captured in @dur attributes on the individual notes are nearly meaningless.
tuplet-nested

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<?oxygen SCHSchema="../../mei19.1/ModularizationTesting/mei-all.rng"/>
<?oxygen RNGSchema="../../mei19.1/ModularizationTesting/mei-all.rng" type="xml"/>
<mei xmlns:xlink="http://www.w3.org/1999/xlink" version="1.9b">
<meihead>
<titlestmt>
<title/></titlestmt>
<pubstmt/>
</meihead>
<encodingdesc>
<projectdesc>
<p>Transcoded from a MusicXML version 1.0 /file on <date>2009-11-09</date> using an XSLT stylesheet (2mei v. 2.2.1).</p>
<p>The MusicXML /file was generated using SharpEye Music Reader 2.</p></projectdesc>
</encodingdesc>
</meihead>
<music>
<body>
<mdiv>
<score>
<scoredef meter.count="3" meter.unit="4" key.sig="1s">
<staffgrp>
<staffdef n="1" xml:id="P1" label.full="Part_1" lines="5" clef.line="4" clef.shape="F" midi.div="20" key.sig="1s"/>
</staffgrp>
</scoredef>
<section>
<measure n="1" xml:id="d1e12">
<staff n="1">
<layer n="1">
<app>
<!-- 2 possibilities for representing tuplets -->
<rdg>
<!-- notes followed by tupletspan -->
<rdg>
<!-- nested tuplet elements -->
<rdg>
<beam>
<!-- notes followed by tupletspan -->
</beam>
</rdg>
</app>
</measure>
</section>
</score>
</mdiv>
</body>
</music>