Hexadecimal Numbers

Craig Stuart Sapp
craig@ccrma.stanford.edu
Representation of Numbers

24
Representation of Numbers

Direct representation:

24

- -
Representation of Numbers

24

Direct representation:

Ishango bone ~20,000 years old www.wikipedia.org/wiki/Ishango_bone
Tally Marks

Easier to read:

Northern European/American tally marks
Tally Marks (2)

Spanish/French/Latin American tally marks
Spanish/French/Latin American tally marks
Tally Marks (3)

1 2 3 4 5

Chinese/Japanese/Korean tally marks
Tally Marks (3)

1 2 3 4 5

24 ➔ 正 正 正 正 正 正 正 矢

Chinese/Japanese/Korean tally marks
Equivalent Representations

24
Positional Notation

• Tally mark groupings make direct representation of numbers easier to read (>5).
Positional Notation

• Tally mark groupings make direct representation of numbers easier to read (>5).
• But fails to convey or be convenient for very large numbers:
Positional Notation

• Tally mark groupings make direct representation of numbers easier to read (>5).
• But fails to convey or be convenient for very large numbers:

• Therefore, positional notation is a more useful method of representing larger numbers:

365
Positional Notation (2)

• What does “365” mean?
Positional Notation (2)

• What does “365” mean?

\[365 = 300 + 60 + 5 \]
Positional Notation (2)

• What does “365” mean?

\[365 = 300 + 60 + 5 \]

\[= 3 \times 100 + 6 \times 10 + 5 \times 1 \]
Positional Notation (2)

• What does “365” mean?

\[365 = 300 + 60 + 5 \]

\[= 3 \times 100 + 6 \times 10 + 5 \times 1 \]

\[= 3 \times 10^2 + 6 \times 10^1 + 5 \times 10^0 \]
Positional Notation (2)

- What does “365” mean?

\[365 = 300 + 60 + 5 \]

\[= 3 \times 100 + 6 \times 10 + 5 \times 1 \]

\[= 3 \times 10^2 + 6 \times 10^1 + 5 \times 10^0 \]
Positional Number Bases

What do these numbers mean?
Positional Number Bases

\[
\begin{array}{cccccc}
0 & 0 & 3 & 6 & 5 \\
\vdots & 4 & 3 & 2 & 1 & 0
\end{array}
\]

Base-10: \[3 \times 10^2 + 6 \times 10^1 + 5 \times 10^0 = 365_{10}\]

- What do these numbers mean?
- Powers of 10 are implicit in decimal numbers
Positional Number Bases

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th>3</th>
<th>6</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Base-10: \(3 \times 10^2 + 6 \times 10^1 + 5 \times 10^0 = 365\)\(_{10}\)

Base-9: \(3 \times 9^2 + 6 \times 9^1 + 5 \times 9^0 = 302\)\(_{10}\)
Positional Number Bases

Base-10: \[3 \times 10^2 + 6 \times 10^1 + 5 \times 10^0 = 365_{10}\]

Base-9: \[3 \times 9^2 + 6 \times 9^1 + 5 \times 9^0 = 302_{10}\]

\[365_9 = 302_{10}\]
Positional Number Bases

$365_{10} = ???_{9}$
Positional Number Bases

$365_{10} = ???_{9}$

- Position “2”: $365 / 9^2 = 4$

 remainder: $365 - 4 \times 9^2 = 41$
Positional Number Bases

365\text{10} = ???\text{9}

• Position “2”: 365 / 9^2 = 4
 remainder: 365 – 4x9^2 = 41

• Position “1”: 41 / 9^1 = 4
 remainder: 41 – 4x9^1 = 5
Positional Number Bases

$365_{10} = ???_{9}$

- Position “2”: $365 / 9^2 = 4$

 remainder: $365 - 4 	imes 9^2 = 41$

- Position “1”: $41 / 9^1 = 4$

 remainder: $41 - 4 	imes 9^1 = 5$

- Position “0”: $5 / 9^0 = 5$
Positional Number Bases

\[365_{10} = ???_{9} \]

- Position “2”: \[365 / 9^2 = 4 \]
 remainder: \[365 - 4 \times 9^2 = 41 \]
- Position “1”: \[41 / 9^1 = 4 \]
 remainder: \[41 - 4 \times 9^1 = 5 \]
- Position “0”: \[5 / 9^0 = 5 \]

\[365_{10} = 445_{9} \]
Common Bases

- **Base-10**: what you learn in school for representing most numbers.
Common Bases

- **Base-10**: what you learn in school for representing most numbers.
- **Base-60**: Minutes/Seconds

 \[12'30'' + 16'42'' = 29'12'' \]

“Sexagesimal”

- Developed ~5000 years ago by Sumerians.
Common Bases

• **Base-10**: what you learn in school for representing most numbers.

• **Base-60**: Minutes/Seconds

 $12'30'' + 16'42'' = 29'12''$

• **Base-1**: Tally marks

\[\begin{align*}
\mid \mid \mid \mid &= 1 \times 1^3 + 1 \times 1^2 + 1 \times 1^1 + 1 \times 1^0 = 4
\end{align*}\]
Common Bases

• **Base-10**: what you learn in school for representing most numbers.

• **Base-60**: Minutes/Seconds

 \[12'30'' + 16'42'' = 29'12'' \]

• **Base-1**: Tally marks

\[| | | | = 1 \times 1^3 + 1 \times 1^2 + 1 \times 1^1 + 1 \times 1^0 = 4 \]

Mayan Numbers (Base-20)
Mayan Numbers (2)

Mayan Numbers (2)

3 \times 20^2 = 1200

Mayan Numbers (2)

\[3 \times 20^2 = 1200\]

\[0 \times 20^1 = 0\]

Mayan Numbers (2)

3 × 20² = 1200

0 × 20¹ = 0

18 × 20⁰ = 18

Mayan Numbers (2)

3 \times 20^2 = 1200

0 \times 20^1 = 0

18 \times 20^0 = 18

\text{12118}

\text{http://www.mayacalendar.com/mayacalendar/f-mayamath.html}
Mayan Numbers (3)

Long Count: Calendar by number of days

“quad-century”	Baktun	20
“bi-decade”	Katun	20
“year”	Tun	20
“month”	Uinal	18
day	Kin	20

digit base

1 baktun = 400 tun
= 20 * 20 * 18 * 20 kin
= 144000 kin

1 katun = 20 tun
= 20 * 18 * 20 kin
= 7200 kin

1 tun = 18 uinal
1 tun = 18 * 20 kin = 360 kin

1 unial = 20 kin
Mayan Numbers (3)

24 February 2013 → 13.0.0.1.14 Long Count date.

• What is the Long Count date for the day before Baktun 13 starts?

• Baktun 13 started on 21 December 2013. What (proleptic) Gregorian calendar day did the first kin occur?
Mayan Numbers (3)

24 February 2013 → 13.0.0.1.14 Long Count date.

• What is the Long Count date for the day before Baktun 13 starts?

 20 December 2012 → 12.19.17.19.19 LC

• Baktun 13 started on 21 December 2013. What (proleptic) Gregorian calendar day did the first kin occur?

 11 August 3114 BC

 About the same time as Stonehenge I
British Money before 1971

(positional notation with non-constant base)

After 15 February 1971:
1 pound = 100 (new) pence

Before 15 February 1971:
1 pound = 20 shillings
1 shilling = 12 pence
(1 pound = 240 pence)

£4-12-7 → 4 pounds, 12 shillings and 7 pence

12/7 → 12 shillings and 7 pence

12/- → 12 shillings

12s 7d → 12 shillings (solidi) and 7 pence (denari)
Binary Numbers

Base-2: Internal representation of numbers on a computer (and most data storage).
Binary Numbers

Base-2: Internal representation of numbers on a computer (and most data storage).

Two numerals in base-2:

- 0 “off”
- 1 “on”
Binary Numbers

Base-2: Internal representation of numbers on a computer (and most data storage).

Two numerals in base-2:

- 0 “off”
- 1 “on”

\[11000_2 = 1 \times 2^4 + 1 \times 2^3 = 16 + 8 = 24_{10}\]
Motivation for Hexadecimal

Base-2: similar to Base-1 (tally marks)

- Difficult to read large numbers:

\[101101101_2 = 365_{10} \]
Motivation for Hexadecimal

Base-2: similar to Base-1 (tally marks)
- Difficult to read large numbers:
 \[101101101_{2} = 365_{10}\]

Base-16: more convenient way of working with binary numbers.
- Every four base-2 digits represent one base-16 digit
- Trivial to convert between base-2 and base-16:
 \[1,0110,1101_{2} = 16D_{16}\]
Hexadecimal Digits > 9

• Convenient to have one character representing each position.

• $A = 10_{10}$
• $B = 11_{10}$
• $C = 12_{10}$
• $D = 13_{10}$
• $E = 14_{10}$
• $F = 15_{10}$
Hexadecimal Digits > 9

- Convenient to have one character representing each position.
 - A = \(10_{10}\)
 - B = \(11_{10}\)
 - C = \(12_{10}\)
 - D = \(13_{10}\)
 - E = \(14_{10}\)
 - F = \(15_{10}\)

0-9 + A-Z can be used to represent base-36 positional numbers
Base-16 (Hexadecimal)

\[365_{10} = 1 \times 16^2 + 6 \times 16^1 + 13 \times 16^0 \]
Base-16 (Hexadecimal)

\[365_{10} = 1 \times 16^2 + 6 \times 16^1 + 13 \times 16^0 \]

D
Base-16 (Hexadecimal)

\[365_{10} = 1 \times 16^2 + 6 \times 16^1 + 13 \times 16^0 \]

\[365_{10} = 16D_{16} \]
Base-16 (Hexadecimal)

\[365_{10} = 1 \times 16^2 + 6 \times 16^1 + 13 \times 16^0 \]

\[365_{10} = 16D_{16} \]

\[= 16Dh \]
Base-16 (Hexadecimal)

\[365_{10} = 1 \times 16^2 + 6 \times 16^1 + 13 \times 16^0 \]

\[365_{10} = 16D_{16} \]

\[= 16D_{16} \]

\[= 0x16D \]
Hexadecimal to Binary Conversion

$16D_{16}$
Hexadecimal to Binary Conversion

16D

- Convert each hex digit to 4 binary digits

0001_2 0110_2 1101_2
Hexadecimal to Binary Conversion

16D

• convert each hex digit to 4 binary digits

0001₂ 0110₂ 1101₂

• concatenate binary digits together

000101101101₂
Hexadecimal to Binary Conversion

16D

- Convert each hex digit to 4 binary digits
- Concatenate binary digits together

0001₂ 0110₂ 1101₂

000101101101₂

\[1 \times 2^8 + 1 \times 2^6 + 1 \times 2^5 + 1 \times 2^3 + 1 \times 2^2 + 1 \times 2^0 = 365_{10} \]
Binary to Hexadecimal Conversion

- \(0_{16} = 0000_2 = 0_{10} \)
- \(1_{16} = 0001_2 = 1_{10} \)
- \(2_{16} = 0010_2 = 2_{10} \)
- \(3_{16} = 0011_2 = 3_{10} \)
- \(4_{16} = 0100_2 = 4_{10} \)
- \(5_{16} = 0101_2 = 5_{10} \)
- \(6_{16} = 0110_2 = 6_{10} \)
- \(7_{16} = 0111_2 = 7_{10} \)
- \(8_{16} = 1000_2 = 8_{10} \)
- \(9_{16} = 1001_2 = 9_{10} \)
- \(A_{16} = 1010_2 = 10_{10} \)
- \(B_{16} = 1011_2 = 11_{10} \)
- \(C_{16} = 1100_2 = 12_{10} \)
- \(D_{16} = 1101_2 = 13_{10} \)
- \(E_{16} = 1110_2 = 14_{10} \)
- \(F_{16} = 1111_2 = 15_{10} \)
Binary to Hexadecimal Conversion

• $0_{16} = 0000_2 = 0_{10}$
• $1_{16} = 0001_2 = 1_{10}$
• $2_{16} = 0010_2 = 2_{10}$
• $3_{16} = 0011_2 = 3_{10}$
• $4_{16} = 0100_2 = 4_{10}$
• $5_{16} = 0101_2 = 5_{10}$
• $6_{16} = 0110_2 = 6_{10}$
• $7_{16} = 0111_2 = 7_{10}$
• $8_{16} = 1000_2 = 8_{10}$
• $9_{16} = 1001_2 = 9_{10}$
• $A_{16} = 1010_2 = 10_{10}$
• $B_{16} = 1011_2 = 11_{10}$
• $C_{16} = 1100_2 = 12_{10}$
• $D_{16} = 1101_2 = 13_{10}$
• $E_{16} = 1110_2 = 14_{10}$
• $F_{16} = 1111_2 = 15_{10}$

$0001,0110,1101_2 = 16D_{16}$
Endian

BE = Big Endian (bigger digits first) LE = Little Endian (smaller digits first)

\[24_{10,be} = 42_{10,le} \]

\[2 + 10^1 + 4 \times 10^0 = 4 \times 10^0 + 2 \times 10^1 \]
Endian

BE = Big Endian (bigger digits first)
LE = Little Endian (smaller digits first)

\[
\begin{align*}
24_{10,be} &= 42_{10,le} \\
2 + 10^1 + 4 \times 10^0 &= 4 \times 10^0 + 2 \times 10^1
\end{align*}
\]

Sing a song of sixpence,
A pocket full of rye.
Four and twenty blackbirds,
Baked in a pie.

http://en.wikipedia.org/wiki/Sing_a_Song_of_Sixpence
Endian (2)

English: Three hundred twenty-four

324
Endian (2)

English: Three hundred twenty-four

German: Drei hundert vier und zwanzig
"three hundred four and twenty"

Arabic: Thalaath mi’a arba’ wa ’ishriin
"three hundred four and twenty"
• Computers handle bytes in big-endian or little-endian orderings.
• Intel x86 CPU architectures are little-endian.
• Motorola 6800 CPU is big-endian.
• ARM is bi-endian (can do both ways).

http://en.wikipedia.org/wiki/Endianness